
RUBY STORIES

Wifi pass: xx

Toilet is upstairs

Food & drink

Heating

1 / 25

Rock-Solid Migrations
David Hrachovy, CEO at PrimeHammer

david@primehammer.com

2 / 25

3 / 25

Introduction
expected knowledge
everyone writes migrations, db holds valuable data
schema and data migrations

About me

4 / 25

Specific examples

5 / 25

Write efficient migrations
Bad code

class ChangeStatus < ActiveRecord::Migration
 def up
 Product.find(:all) do |p|
 p.update_attributes(status: 10)
 end
 end
end

Good code:

class ChangeStatus < ActiveRecord::Migration
 def up
 Product.find_each do |p|
 p.update_attribute(:status, 10)
 end
 end
end

6 / 25

Better code:

class ChangeStatus < ActiveRecord::Migration
 def up
 Product.update_all(status: 10)
 end
end

Even better code:

namespace :db_maintenance do
 desc 'Fix product status'
 task fix_product_status: :environment do
 Product.update_all(status: 10)
 puts 'done.'
 end
end

TIP: test suspicious data migration with large tables

7 / 25

Refactor
Bad code:

class AddNewCountToUsers < ActiveRecord::Migration
 def up
 add_column :users, :new_count, :integer
 execute "UPDATE users SET new_count = count;"
 remove_column :users, :count
 end
end

Good code:

class AddNewCountToUsers < ActiveRecord::Migration
 def up
 rename_column :users, :count, :new_count
 end
end

8 / 25

Use reversible methods
Bad code:

 def up
 remove_column :people, :name
 end

 def down
 add_column :people, :name, :string
 end

Good code:

 def change
 remove_column :people, :name, :string
 end

Using ActiveRecord DSL instead of raw SQL is good
9 / 25

List of reversible methods
add_column
add_foreign_key
add_index
add_reference
add_timestamps
change_column_default # (must supply a :from and :to option)
drop_table # (must supply a block)
remove_column # (must supply a type)
remove_foreign_key # (must supply a second table)
...
and more

10 / 25

Complex data migrations

 def up
 execute <<-SQL
 UPDATE groups SET moderator_can_access = 't'
 WHERE id IN (
 SELECT groups.id FROM groups
 INNER JOIN controls ON groups.id = controls.document_group_id
 INNER JOIN user_groups ON controls.user_group_id = user_groups.id
 WHERE user_groups.id IN
 (SELECT user_groups.id FROM user_groups
 LEFT OUTER JOIN memberships ON user_groups.id = memberships.user_group_id
 WHERE user_groups.group_type_cd = 'moderator'
 GROUP BY user_groups.id
 HAVING COUNT(memberships.id) > 0));
 SQL
 end

 def down
 execute "UPDATE groups SET moderator_can_access = 'f';"
 end

11 / 25

Complex data migrations
always write test for multiple scenarios
test it on staging
explicitely give QA person instructions
do backup
write down method and test rollback
document the intentions (code review)
rake task

12 / 25

Downtime

13 / 25

Problem during deploy
Typical deploy: run migrations & restart servers

Result: two versions of an app at the same time
14 / 25

Example: Dropping a column
class RemoveTitleFromUsers < ActiveRecord::Migration
 def change
 remove_column :users, :title, :string
 end
end

15 / 25

old app may still save data into the column therefore
raises undefined method title

FIX: maintenance mode or zero downtime migration

16 / 25

One of the solutions
Any migration being deployed should be compatible

with the code that is already running.

General steps:

make code compatible with migration you need to
run, deploy
run migration

17 / 25

Safe column drop
1. remove parts of code that touch title

<%= user.title %>

2. Deploy

3. Run the migration

class RemoveTitleFromUsers < ActiveRecord::Migration
 def change
 remove_column :users, :title, :string
 end
end

18 / 25

Some unsafe migrations
changing the type of a column
renaming a table
renaming a column
removing a column
and more

avoid premature optimization

(maybe clean up DB every 6 months)

19 / 25

When something goes wrong

20 / 25

If on production
Tell someone as soon as possible
don't modify already pushed migration on
production
check other environments

If not on production
Warn everybody (rebuild db)
Delete the migration from source control

21 / 25

Wrap up

22 / 25

Checklist
it's efficient
it's reversible
it's small
old app can use it
complex data migration is well tested
code review
use staging

23 / 25

References
No More Lost Data by Noah Gibbs

Strong migrations used by Instacart

http://www.simononsoftware.com/why-ruby-on-rails-
migrations-dont-work/

24 / 25

http://no-more-lost-data.com/
https://github.com/ankane/strong_migrations
http://www.simononsoftware.com/why-ruby-on-rails-migrations-dont-work/

The End. Questions?
david@primehammer.com

25 / 25

