
Ruby Stories 2016

When Validations
Are Not Enough

1

About Me
Ivan Stana

Ruby on Rails programmer at PrimeHammer

lots of interests especially in tech, but also poi spinning

github.com/istana

download the slides at blog.primehammer.com

2

Three Basic Questions About Invalid or
Disintegrated Data in Our Database
WHY BOTHER ANYWAYS?

HOW DOES IT HAPPEN?

WHAT CAN WE DO ABOUT IT?

3

WHY BOTHER
ANYWAYS?

4

WHY BOTHER ANYWAYS?
app/views/user.html.slim

...

user.addresses.find_by(kind: 'default').zip_code

user.html.slim: undefined method 'zip_code'

 for nil:NilClass (NoMethodError)

01.

02.

03.

01.

02.

5

6

GOALS
• to have valid all instances of models (ActiveRecord/Sequel)

• security related checks, e.g. check who is a global admin against a list of

known admins

• integration validations, i.e. systems outside of HTTP world

• data in DB synchronized with remote database/API

• do it daily

7

HOW DOES IT
HAPPEN?

8

Sometimes we need to bypass model
validation
Example: updating model that is already invalid

user.set_billing_info(params[:order])

user.bcrypt_password = params[:password]

user.bcrypt_password_confirmation = params[:password]

user.save(validate: false)

01.

02.

03.

04.

9

Write to a virtual attribute, but record could've
been invalid before
Correct way - modify only necessary attribute(s). Example: Devise

user.set_billing_info(params[:order])

user.reload

user.bcrypt_password = params[:password]

user.bcrypt_password_confirmation = params[:password]

user.save(validate: false)

01.

02.

03.

04.

10

update_column
order.update_column(:status, :unstarted)

model validations and callbacks are not triggered

but it's useful for doing fast migrations or saving a state

the same for update_all, delete, delete_all

11

Database Migrations - New Columns
class AddAgeToUser

 def change

 add_column :age

 end

end

class User

 validates :age, presence: true

01.

02.

03.

04.

05.

01.

02.

12

x = User.find_by first_name: 'Tremal', last_name: 'Naik'

=> #<User first_name: 'Tremal', last_name: 'Naik', age: nil>

x.valid?; x.errors

=> #["age" => ["is required"]]

01.

02.

03.

04.

13

Stricter Validations
class User

 validates :first_name, length: { minimum: 4 }

x = User.find_by first_name: 'Vin', last_name: 'Diesel'

=> #<User first_name: 'Vin', last_name: 'Diesel', age: 49>

x.valid?; x.errors

=> #["first_name" =>

 ["is too short (minimum is 4 characters)"]]

01.

02.

01.

02.

03.

04.

05.

14

15

How to Limit Invalid Models
• use null:, default:, limit:

• https://github.com/SchemaPlus/schema_plus - a collection of gems

https://github.com/SchemaPlus/schema_validations - auto validations

https://github.com/SchemaPlus/schema_auto_foreign_keys - auto fk

• write a Cron job to check if all models are valid

16

Unsynchronized
data

17

Unsynchronized data
they are valid in our database, but are outdated against remote database/API

• number of copyright claim of our YouTube video

• status of a document, order, package from a transport service

18

How it happens?
x = YtVideo.find_by human_id: "scorpion_king4"

x.copyright_claims

=> 0

01.

02.

03.

19

Expectation

20

Reality

21

The usual problem is that YouTube sent a webhook with updated copyright

claims, but we've never received it, because there was a network interruption

We can use polling to synchronize all data

22

Thank You

23

