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About Me
Ivan Stana

Ruby on Rails programmer at PrimeHammer

lots of interests especially in tech, but also poi spinning

github.com/istana

download the slides at blog.primehammer.com
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Three Basic Questions About Invalid or
Disintegrated Data in Our Database
WHY BOTHER ANYWAYS?

HOW DOES IT HAPPEN?

WHAT CAN WE DO ABOUT IT?
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WHY BOTHER
ANYWAYS?
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WHY BOTHER ANYWAYS?
# app/views/user.html.slim

...

user.addresses.find_by(kind: 'default').zip_code

user.html.slim: undefined method 'zip_code'

 for nil:NilClass (NoMethodError)
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GOALS
• to have valid all instances of models (ActiveRecord/Sequel)

• security related checks, e.g. check who is a global admin against a list of

known admins

• integration validations, i.e. systems outside of HTTP world

• data in DB synchronized with remote database/API

• do it daily
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HOW DOES IT
HAPPEN?
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Sometimes we need to bypass model
validation
Example: updating model that is already invalid

user.set_billing_info(params[:order])

user.bcrypt_password = params[:password]

user.bcrypt_password_confirmation = params[:password]

user.save(validate: false)
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Write to a virtual attribute, but record could've
been invalid before
Correct way - modify only necessary attribute(s). Example: Devise

user.set_billing_info(params[:order])

user.reload

user.bcrypt_password = params[:password]

user.bcrypt_password_confirmation = params[:password]

user.save(validate: false)
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update_column
order.update_column(:status, :unstarted)

model validations and callbacks are not triggered 

but it's useful for doing fast migrations or saving a state 

the same for update_all, delete, delete_all
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Database Migrations - New Columns
class AddAgeToUser

  def change

    add_column :age

  end

end

class User

  validates :age, presence: true
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x = User.find_by first_name: 'Tremal', last_name: 'Naik'

=> #<User first_name: 'Tremal', last_name: 'Naik', age: nil>

x.valid?; x.errors

=> #["age" => ["is required"]]
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Stricter Validations
class User

  validates :first_name, length: { minimum: 4 }

x = User.find_by first_name: 'Vin', last_name: 'Diesel'

=> #<User first_name: 'Vin', last_name: 'Diesel', age: 49>

x.valid?; x.errors

=> #["first_name" =>

  ["is too short (minimum is 4 characters)"]]
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How to Limit Invalid Models
• use null:, default:, limit:

•  https://github.com/SchemaPlus/schema_plus - a collection of gems 

https://github.com/SchemaPlus/schema_validations - auto validations 

https://github.com/SchemaPlus/schema_auto_foreign_keys - auto fk

•  write a Cron job to check if all models are valid
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Unsynchronized
data
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Unsynchronized data
they are valid in our database, but are outdated against remote database/API

• number of copyright claim of our YouTube video

• status of a document, order, package from a transport service
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How it happens?
x = YtVideo.find_by human_id: "scorpion_king4"

x.copyright_claims

=> 0

01.

02.

03.

19



Expectation
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Reality
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The usual problem is that YouTube sent a webhook with updated copyright

claims, but we've never received it, because there was a network interruption

We can use polling to synchronize all data
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Thank You
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