
REFACTORING
ERICH KADERKA @ PRIMEHAMMER

WHAT IS REFACTORING?

▸ Martin Fowler: Refactoring is a controlled technique for improving the
design of an existing code base. Its essence is applying a series of small
behavior-preserving transformations, each of which “too small to be worth
doing”.

▸ Joshua Kerievsky: By continuously improving the design of code, we make
it easier and easier to work with. This is in sharp contrast to what typically
happens: little refactoring and a great deal of attention paid to expediently
adding new features. If you get into the hygienic habit of refactoring
continuously, you’ll find that it is easier to extend and maintain code.

▸ Most required prerequisite for refactoring is having tests. If you don't have,
write them before you start to refactor.

TOOLS

▸ Rubycritic - https://github.com/whitesmith/rubycritic  
Rubycritic wraps around static analysis gems such as Reek,
Flay and Flog to provide a quality report of your Ruby code.

▸ Pronto - https://github.com/mmozuras/pronto  
Pronto runs analysis quickly by checking only the relevant
changes. Created to be used on GitHub pull requests, but
also works locally and integrates with GitLab and Bitbucket.
Perfect if want to find out quickly if branch introduces
changes that conform to your style guide, are DRY, don't
introduce security holes and more.

https://github.com/whitesmith/rubycritic
https://github.com/mmozuras/pronto

HOW TO USE THEM

▸ I recommend to use Pronto on daily basis. It has to be
configured to get rid off of some annoying checks. But it's
highly adaptive. From time to time it's not a bad idea to
run rubycritic (especially after finishing a biggish feature)
to see the churn table

▸ Churn chart is really important for one reason. It doesn't
make sense to refactor code, that nobody touches. If it
works and there are no changes, leave it alone :).

EXAMPLE

▸ Project hlidacky.cz

▸ Model Sitter

▸ More than 1800 lines

▸ High Complexity & Duplication

▸ Nearly 580 commits

REEK

▸ Reek is a tool that examines Ruby classes, modules and
methods and reports any Code Smells it finds. The list of
smells isn't very long and there some great examples.

▸ e.g. UnusedPrivateMethod or
UncommunicativeMethodName

▸ Personally I don’t agree with PrimaDonnaMethod. Btw it
doesn't hurt to run this for test folder.

TEXT

FLAY

▸ analyzes code for structural similarities (duplication)

FLOG

▸ deals with complexity. Reports the most tortured code in
an easy to read pain report. The higher the score, the more
pain the code is in. Flog parses it and builds up a structure
of the code internally using RubyParser. Then it goes
through every class and method until everything is scored.
What you end up with is a breakdown of how each class
and method scored.

FLOG OUTPUT

▸ The solution was to extract points calculations to its own
class. It wasn’t too hard, you could see duplication and
complexity in isolation so it was easier eliminate.

TEXT

SHORT SUMMARY

▸ Main reason for this presentation - to learn more about
gems which are used in rubycritic, pronto, code climate etc

▸ Flog - measures the complexity

▸ Flay - reports duplication

▸ Reek - code smell detector

WHEN TO REFACTOR? STABLE

▸ S - Smell your code. Study code smells and other don’t’s, so you can identify
things you could fix. You want to start noticing and naming the problems in the
code you look at. Even though you won’t be fixing them all yet.

▸ T - Tiny problems first. In messy code, there will be lots of smells. The best way to
get started is to pick a really small problem that you know how to solve in a very
concrete way and just fix that. For example, rename variable. Your goal is to see
the large problems better, by clearing away the small problems obscuring them.

▸ A: Augment your tests. You will almost certainly have to do this to be able to
refactor large classes. You need integration tests one level higher than the class
you are working on. If you want to refactor a big controller method, you need a
feature spec. If you want to refactor a big model, you need controller-level tests. In
general test behavior, not implementation. You need tests that describe the
behavior you want to keep.

TEXT

STABLE

▸ B: Back up. When the code has an abstraction in it that is no longer serving you well,
sometimes the most useful thing to do is to ‘rewind’ the code into more procedural
code, put all the duplication back, and start again. It is much more easier to move from
procedure to the right set of objects than it is to move from the wrong set to the right
set.

▸ L: Leave it better than you found it. During any one expedition into the code to add
feature or fix a bug you won’t be able to fix all the problems you see. Sometimes the
only thing you have time to do alongside your stated goal is a rename a method. The
next person to come though this code will be able to understand it a little bit more
easily. Maybe the big abstraction will suddenly be obvious.

▸ E: Expect good reasons. Assume past developers had good reasons to write the code
they did. Some code looks so horrible that we think: “what idiot wrote this?” And then
you run git blame and find out it was you. Start thinking about the social pressures that
affect your codebase, and many things will make a lot more sense.

RESOURCES

▸ Sarah Mei - "Is Your Code Too SOLID?” - https://
www.youtube.com/watch?v=WtpQD1cR3mA

▸ Bryan Helmkamp - Code Quality Lessons Learned - https://
www.youtube.com/watch?v=vcH0RBe4Eew

▸ Github & Ruby toolbox

https://www.youtube.com/watch?v=vcH0RBe4Eew
https://www.youtube.com/watch?v=vcH0RBe4Eew

